Waste-to-Energy Plants' Energy Conversion Status and Its Efficiency in Korea

2015.10

University of Seoul Jong-In Dong

Contents

1. Introduction

2. Outline of Waste-to-Energy

3. Energy Efficiency Analysis of WtE Plants

4. Results & Discussion

5. Conclusions

1. Introduction

1. Introduction

Environmental Crisis

Environmental Crisis

1. Introduction

Environmental Conditions

Environmental crisis Getting worse due to climate change

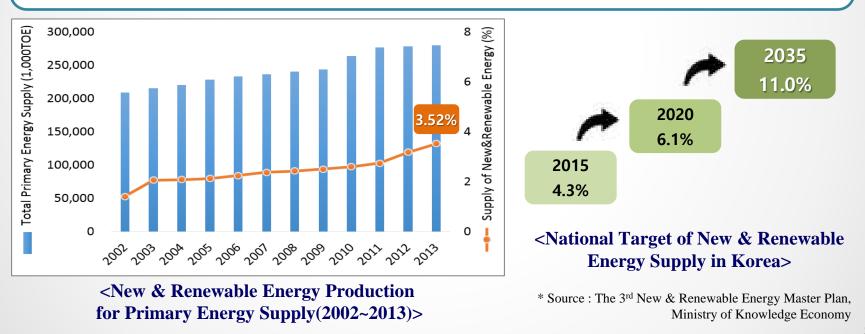
Imbalance b/w energy supply and demand and resource crisis

Continuous increase in energy demand and rising dependence on energy imports

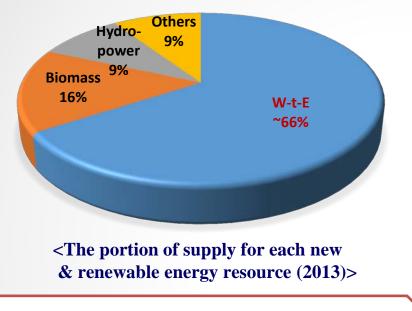
Increased emissions resulting from fossil fuel-centered economy

Slowing economic growth And weakening growth momentum

Industrial Perspective :

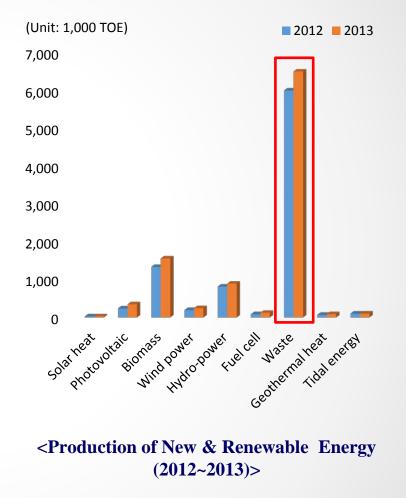

- A waste management solution
- A waste recovery process
- A cost saving

Global Perspective :


- Renewable energy
- Secure energy supply
- Greenhouse gas abatement

Waste-to-Energy : Comprehensive Countermeasure Establishment

- Waste-to-Energy Comprehensive Policy (2008)
- Measure for Waste Resource and Biomass Energy (2008), Action Plan (2009)
- Policies for promoting New & Renewable Energy (2010)
- New energy (3) : Fuel cell, Coal liquefaction and Gasification, Hydrogen
- Renewable (8) : Solar heat, Photovoltaic, Biomass, Wind power, Hydro-power, Geothermal heat, Tidal energy, Waste



Waste-to-Energy; New & Renewable Energy

Waste

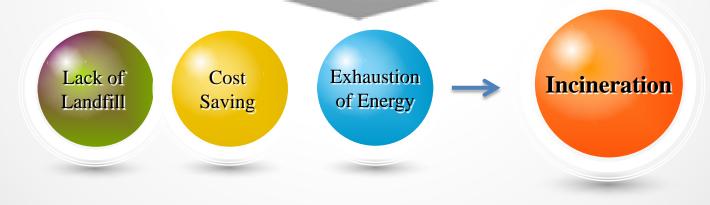
- Liquefaction and pelletization by thermal cracking
- Technology of solid fuel manufacturing (SRF)
- Combustible gas manufacturing techniques by gasification
- Heat Recovery Techniques by Incineration

* Source : Korea energy management corporation, New & Renewable Energy Statistics 2013 (2014 Edition)

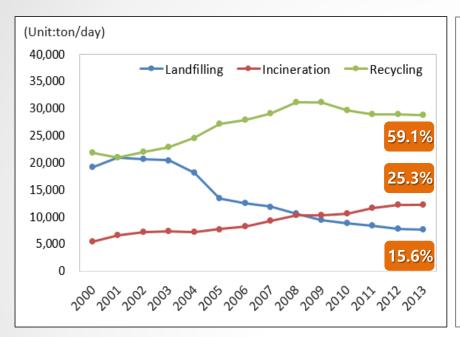
Waste Treatment Policy

2012

2013


2014

	• A Ban on the dumping of Sewage Sludge and Livestock Manure at sea
--	---


- A Ban on the dumping of Food Wastewater at sea
- A Ban on the dumping of Organic Waste at sea

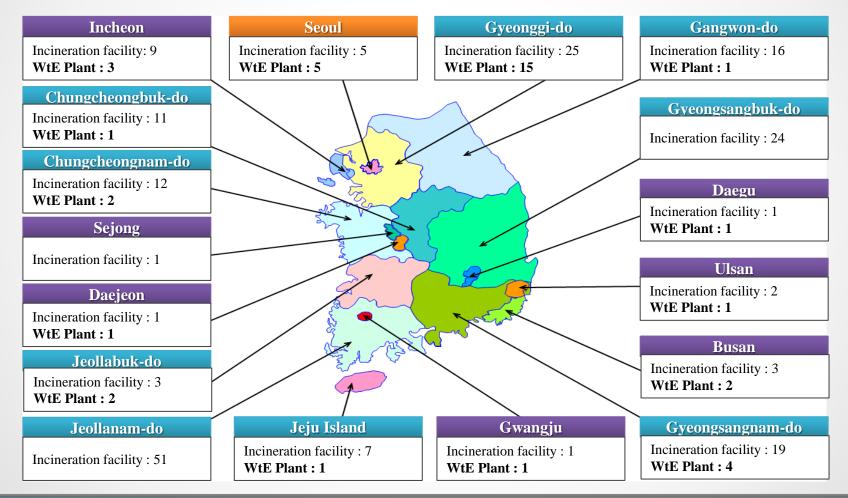
Waste Treatment on Land

Waste Treatment Status

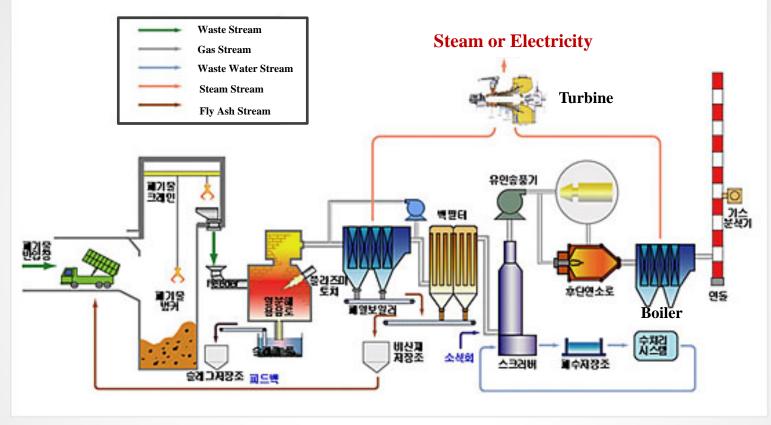
<Trend of MSW Treatment (2000~2013)>

(wt%) Moisture Volatile Ash

<Change of MSW composition (2002~2012)>


* Source : Korea Incinerating Conference

- Increase of Waste Incineration
- **Besource recovery from waste by high oil price**
 - Increase in Recycling ratio and Decrease in Landfill ratio


WtE Plants in Korea

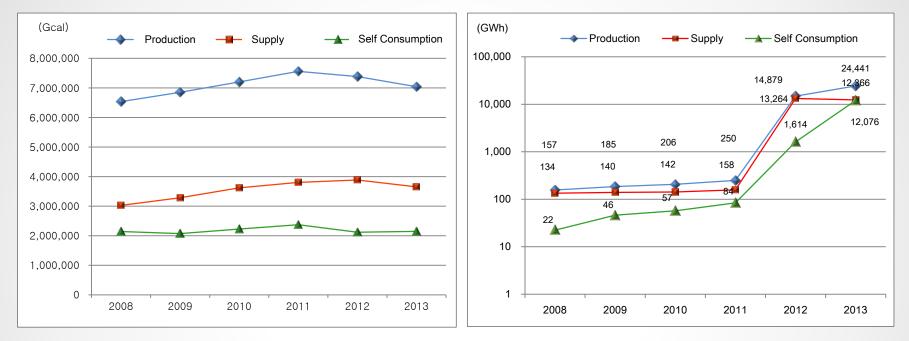
• Total 191 Incineration facilities in Korea (2013)

- 39 WtE Plants : MSW(Municipal Solid Waste) incineration facility

Energy Production in WtE Plant

<Schematic Diagram of Incineration facility>

* Source : GS Energy


Heat loss : Incinerator wall, Mismatch of pollution prevention facility, Ash, etc.

Energy Recovery Status

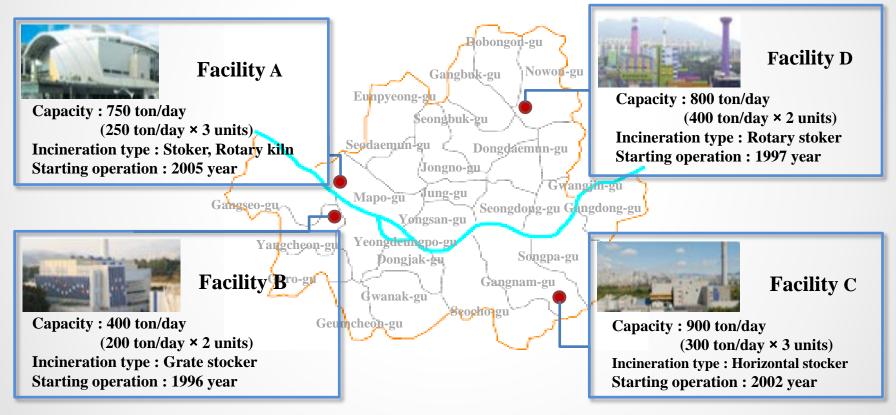
<Recovery and Utilization Status of Waste Heat (2013)>

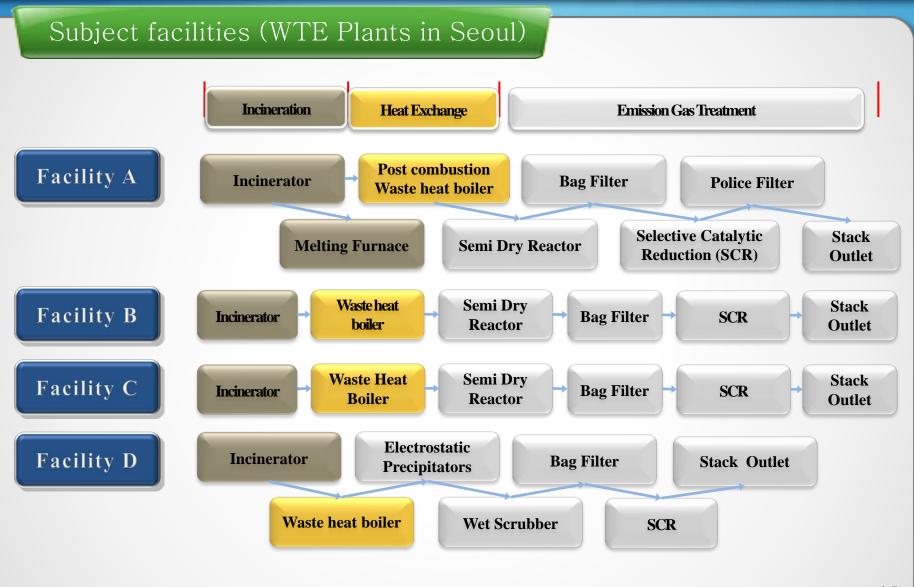
Veer	Capacity	Waste heat generation	Waste	Energy Recovery		
Year	(ton)	(Gcal)	Total	Electricity	Steam	(%)
Average	3,364,482	7,041,028	4,720,987	1,068,977	3,652,010	67
January	301,224	623,550	427,523	73,720	353,803	69
February	279,576	560,024	389,251	69,702	319,549	70
March	286,634	629,202	444,474	74,611	369,863	71
April	249,076	519,184	370,593	85,931	284,662	71
May	259,693	546,324	371,117	76,853	294,264	68
June	264,379	582,171	372,089	103,259	268,830	64
July	317,396	643,571	406,867	117,638	289,229	63
August	268,813	595,802	358,406	111,309	247,097	60
September	285,724	618,913	395,220	113,167	282,053	64
October	267,916	548,426	379,500	91,009	288,491	69
November	284,057	516,501	354,113	70,998	283,115	69
December	299,994	657,360	451,834	80,781	371,053	69

Energy Recovery Status

<Energy Recovery Status (2008~2013)>

<Status of MSW Treatment (2008~2013)>


* Source : Korea Incinerating Conference


- Waste heat increase supplied into District heat
- Since 2011, electricity production and sales have grown rapidly
 - Self consumption was about 50% of electricity production in 2013

3. Energy Efficiency Analysis of WtE Plants in Seoul

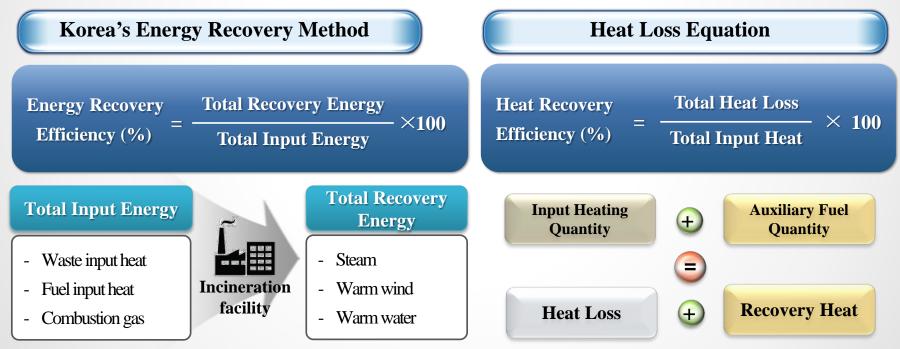
Subject facilities (WTE Plants in Seoul)

• 4 Waste-to-Energy plants in Seoul area were studied.

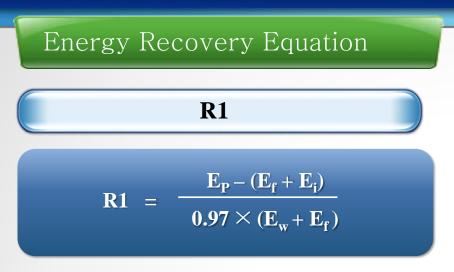
Energy Recovery at WtE Plants

 It was carried out in terms of MSW process, operation status and utilization of waste heat during 2011 ~ 2013.

<The Utilization Status of Waste Heat at Subject Facility (2013)>


Incineration facility		Α	В	С	D
Steam	Inside	21.4	24.2	4.5	24.4
Steam	Outside	13.6	70.8	95.5	75.6
Electricity	Inside	4.5	3.3	-	-
Electricity	Outside	2.5	1.7	-	-
Warm water	Inside	-	-	-	-
warm water	Outside	58	-	-	-
Total		100	100	100	100

Remark] Inside denotes energy utilization inside the plants, etc.


Energy Recovery Equation

Energy recovery efficiency was calculated using the following equations.

- 1) Korea's Energy Recovery Method
- 2) R1
- 3) Heat Loss Equation

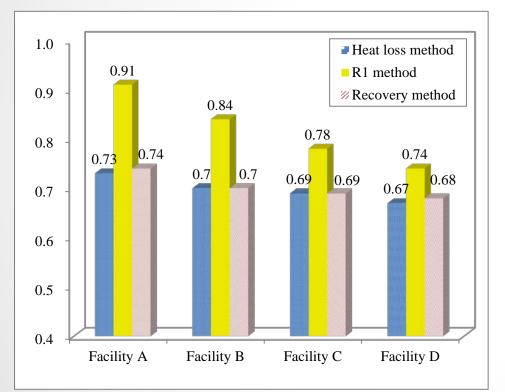
2. Materials and Methods

- 0.60 for installations in operation and permitted in accordance with applicable Community legislation before 1 January 2009.
- 0.65 for installations permitted after 31 December 2008.

MSW definition is not clear

- The factors of 1.1 and 2.6 have a lack of scientific basis
- Although it is different to use recovery energy in Each country, energy efficiency is set to identical guideline

- $$\begin{split} E_{P} &= 1.1 \times E_{th} + 2.6 \times E_{fuel} \\ E_{f} &= \sum m_{fuel} \times NCV_{fuel} \\ E_{w} &= m_{waste} \times NCV_{waste} \end{split}$$
- $E_{\rm P}$: The energy produced by the electricity (Gcal/year)
- $E_{\rm f}$: Total quantity contributed Steam production (Gcal/year)
- E_{i} : exclude E_{w} and E_{f} of annual input energy (Gcal/year)
- 0.97 : Energy loss factor
- $E_{\rm th}$: Energy quantity of produced heat (Gcal/year)
- $E_{\rm el}$: Energy quantity of produced electricity (Gcal/year)

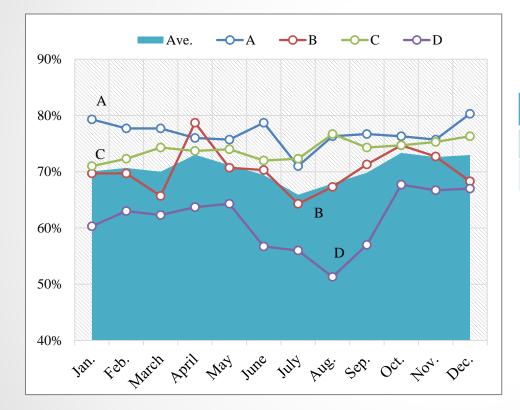

* Source : EU (2008) Guidelines on the R1 energy efficiency formula in Annex II of Directive 2008/98/EC

4. Results & Discussion

4. Results & Discussion

The Comparison of Energy Recovery Efficiency

Different Energy Recovery Efficiency by each formula Optimization of Treatment Process


- Heat loss method and recovery method showed similar values
- R1 method is showing the highest value
- R1 is made by EU, it is difficult to reflect domestic(Korea) situation
- High energy loss in facility D
 - Mismatch between pollution control facilities

<The Comparison of Energy Recovery Efficiency (2013)>

4. Results & Discussion

Seasonal Change of Energy Utilization

Energy Utilization Changes depending on Seasonal Variation

Recovery Efficiency (%)				
Except in summer	In summer			
71.2 ~ 76.1	63.4 ~ 68.9			

Low energy utilization in summer
Low heat demand and steam wasted

<Seasonal Variation of Energy Utilization Efficiency(2013)>

5. Conclusions

5. Conclusions

To raise recovery energy....

 In summer, energy utilization efficiency was relatively low because heat demand is relatively small and steam is wasted.

Various approaches like district cooling needs to be considered to improve energy efficiency

 Korea's Energy Recovery Method is considered only output except actual energy consumption

Energy efficiency estimation method should be reconsidered to reflect the actual energy application situations.

Thank you for your attention!

Jong-In Dong (jidong@uos.ac.kr)