

SYNTHESIS, CHARACTERIZATION AND CATALYTIC PROPERTIES OF CALCIUM METHOXIDE FOR TRANSESTERIFICATION OF NON-EDIBLE JATROPHA CURCAS AND NANNOCHLOROPSIS OCULATA OILS TO BIODIESEL

Y.H. Taufiq-Yap 1,2* and S.H. Teo 1,2

¹Catalysis Science and Technology Research Center; ²Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.

B03066AI (F800232) 5-04

Base 801957 (R02595) 11-98

Selamat Datang (Welcome) ke (to) Universiti Putra Malaysia

- 1931 School of Agriculture
- 1946 Malayan Agricultural College
- 1971 Universiti Pertanian Malaysia
- 1997 Universiti Putra Malaysia

(one of the first 4 Research Universities in Malaysia)

Main Campus Size - Serdang 1108.103 hectares Branch Campus Size - Bintulu 714.717 hectares

Faculty -Institute -Centre -School -Academy -

16 9 16 2

Number of Undergraduates Number of Postgraduates **Total Students** Number of Lecturers and Tutors Number of Full Professors

- 15,350 10,266 25,616 1,848
 - 189

Is Biofuel a good alternative to Fossil fuel?

□ Alternative to fossil fuels produced from renewable sources.

□ Non-toxicity, biodegradability, free sulfur & aromatic content, *i.e.* 0 % CO₂

□ Similar to petroleum diesel combustible properties, *i.e.* flash point & cloud point

One of the major pollutant in the world, i.e. heart & lung

□ Is fossil fuel that released significant amount of CO₂ into atmosphere when burning it.

FOSSIL FUE

M. G.Kulkarni, A. K. Dalai, N. N. Bakhshi, (2007) Bioresource Technology, 98: 2027-2033.

Fuel: What is Advanced Biofuel ?

Masjuki, H. H., Mahlia, T. M. I., Choudhury, I. A. and Saidur, R. 2002. Potential CO₂ reduction by fuel substitution to generation electricity in Malaysia. *Energy Conversion and Management*, **43(6)**: 763-770.

Lim, S. and Teong, L. K., 2010. Recent trends, opportunities and challenges of biodiesel in Malaysia: an overview. Renewable & Sustainable Energy Reviews, **14(3)**: 938-954.

Why Jatropha for biofuel?

- Locally known as "jarak pagar" in Malaysia (Jatropha curcas)
- > **Fast-growing**, easily propagated by cuttings
- A yield of 5-10 ton/ha/year (up to 40 % oil content)
- Non-competitive to other crops
- Grow in arid and semi-arid areas
- Not browsed by animals (non-edible) ⁶
- > Oil increase trade among all countries Jatropha

Yield per hectare in liter*

Resources for Biodiesel

Oil palm7,133Coconut3,223Jatropha2,268Olive1,450Canola (Rape)1,427Sunflower1,146Soy bean541Corn (Maize)200

*Under optimal conditions Quelle: Phillips McDougall, January 2008 · Copyright © Bayer CropScience

latropha oil

Why microalgae for biodiesel?

Why microalgae for biofuel?

Food vs fuel: does not compete with food supply

Adaptability & high growth rate: > 50 times faster than land based plant & consumes very less water compare to land crops

Lesser land requirement: limited land resources make solved the potential biomass insufficient

High oil yield (15-300 time more oil than traditional crops Above 50 % some as high as 75 %)

%, some as high as 75 %)

-Microalgae: 5000 to 15000 gallons/acre/year

-Oil Palm: 635 gallons/acre/year

-Sunflower: 102 gallons/arce/year

High CO₂ capture capacity: high photosynthesis efficiencies (CO₂ convert to O_2) – algae in carbon cycle

Comparison of some sources of biodiesel and oil content

Course	Land Use Oil Content		Oil Yield	Biodiesel Productivity		
Сгор	(m²/year/Kg biodiesel)	(% oil by wt. in biomass)	(1 L/ha/year)	(Kg biodiesel/ha/year)		
Corn	66	44	172	152		
Soybean	31	18	446	562		
Jatropha	15	28	741	656		
Sunflower	11	40	1070	946		
Canola	12	41	1190	862		
Castor	9	48	1307	1156		
Coconut	· -	-	2689	-		
Oil Palm	2	36	5950	4747		
Microalgae ^a	0.2	30	58700	51927		
Microalgae ^b	0.1	50	97800	86515		
Microalgae ^c	0.1	70	136900	121104		
-Botrycoccus braunill		25-75				
-Chlorella sp.		28-32				
-Crypthecodinium cohnii		20				
-Cylindrotheca sp.		16-37				
-Dunaliella primolecta		23				
-Isochrysis sp.		25-33				
-Monallanthus salina		>20				
-Nannochloris sp.		20-35				
-Nannochloropsis sp.		31-68				
-Neochloris oleoabundans		35-54				
-Nitzschalgae produced hig	h oil yield (30 % based on b h oil vield (50 % based on b	iomass weight) ₄₇ iomass weight)				

of some microalgae

^cMicroalgae produces low oil yield (70 % based on biomass weight) Amish, P. V., Jaswant, L. V. and Subrahmanyam, N. 2010. A review on FAME production processes. *Fuel*, **89:**1-9.

Transesterification of vegetable oil and microalgae oil using various

catalysts

Catalyst	Feedstock	Reaction	Reaction time	Conversion	Literature		
		temperature	(min)	(c); yield (y)			
		(°C)		(%)			
KOH/Al ₂ O ₃	Palm oil	-	-	91.1	Noiroj <i>et al.,</i> 2009		
CaO	Jatropha curcas oil	-	-	93 (y)	Huaping <i>et al.,</i> 2006		
K ₂ CO ₃ /MgAl	Jatropha curcas oil	-	-	>96 (y)	Teng <i>et al.,</i> 2010		
H ₂ SO ₄	Chlorella	30	240	> 80 (y)	Xu <i>et al.,</i> 2006		
	protothecoides						
Candidia sp. 99-125	Chlorella	38	720	98.2 (c)	Xiong <i>et al.,</i> 2008		
(Immobilized lipase)	protothecoides						
Zeolite (h-Beta)	Nannochloropsis	45	115	25 (y)	Carrero <i>et al.</i> , 2010		
	gaditana						
Burkholderia	Chlorella vulgaris	40	2880	97.3 (c)	Tran <i>et al.,</i> 2012		
sp./alkyl-grafted							
Fe ₂ O ₃ -SiO ₂							
(Immobilized lipase)							
CaO/Al ₂ O ₃	Nanochloropsis	50	240	97.5 (y)	Umdu <i>et al.,</i> 2009		
	oculata						
MgO/Al ₂ O ₃	Nanochloropsis	50	240	50 (y)	Umdu <i>et al.,</i> 2009		
	oculata						
SrO	Nannochloropsis sp.	-	-	37.1 (y)	Koberg <i>et al.,</i> 2011		
Mg-Zr	Nannochloropsis sp.	65	240	22.2 (y)	Li et al., 2011		

Objectives

- To synthesis bulk **calcium methoxide solid catalyst** with different synthesis reaction time.
- To study the **physico-chemicals properties** of catalysts.
- To test the **catalytic activity** of calcium methoxide soild catalyst on crude *Jatropha curcas* and microalgae oils (*Nannochloropsis oculata*).
- To investigate the effect of **variables** transesterification parameters on biodiesel production (reaction time, catalyst concentration in weight % and molar ratio of methanol to oil).

Methodology

Cultivation, Extraction & Catalytic test: crude microalgae derived oil (MDO)

Algae Seeds

1 week cultured

2 week cultured

Large-scale microalgae production

Methodology

(3a) Catalytic test (phase I): crude plant derived oil (PDO)

Glycerol

(3b) Catalytic test: crude microalgae derived oil (MDO)

Physico-chemical properties of Ca(OCH₃)₂

Obvious broad peak[®] of cubic CaO (32.1°, 37.2°) -pure calcium oxide.

Calcium oxide was transformed into **calcium methoxide** as evident from the characteristic peak at 2θ value of 10.8° after (2-12 h) react with methanol under reflux.

$$CaO + 2CH_3OH \xrightarrow{65 \circ C} Ca(OCH_3)_2 + H_2O$$

calcium oxide calcium methoxide

	^a Crystallit	^b S _{BET}	
Catalyst	CaO	Ca(OCH ₃) ₂	
Pure CaO	66.3	-	
CM2	-	32.0	16.2
CM4	-	31.1	18.3
CM6	-	30.6	17.5
CM8	-	27.5	30.5
CM10	-	29.5	28.8
CM12	-	31.4	26.0

^aDeterminded using Sherrer's equation from the XRD pattern. ^bDertermined using BET surface area.

No indication regarding the presence of unreacted CaO in the final product (CM6-12).

M. Hassan, Y. Robiah, S. Y. Thomas Chong, R. Umer and Y. H. Taufiq Yap, Synthesis and cahracterization of calcium methoxide as heterogeneous catalyst for trimethylolpropane esters conversion reaction. (2012) *Applied Catalysis A: General*, 425-426: 184-190.

Physico-chemical properties of Ca(OCH₃)₂

(a) -C-O stretching vibration of 1° alcohol; (b) -C-H (alkane) bending; (c) -CH₃ streching vibration; (d) -OH streching vibration of 1° alcohol.

Water was produced as a by product in the catalyst synthesis reaction – these isolated – OH groups might have produced from water to facilitate the strong basic property of $Ca(OMe)_2$.

The image of CaO catalyst showed the mophology of CaO with irregular shape.

The surface of $Ca(OMe)_2$ appears to be formed the **cluster of thin plates** which are visible on the surface of catalyst.

The particle start to **agglomerate** with prolong the synthesis duration.

SEM & TEM

Catalyst	2θ (°)	FWHM	Crystallite size ^a (nm)	$S_{BET}^{b} (m^2 g^{-1})$	Shape ^c	Particle sized (nm)
CaO	37.4701	0.1510	66.3	9.2	Cubic crystal	137.02 ± 11.30
CM2	10.8448	0.2784	29.0	16.2	Cubic crystal & irregular bulky round	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
CM4	10.8348	0.2597	31.1	18.3	Cubic crystal & irregular bulky round	$120.07 \pm 23.32^{\circ} \& 34.74 \pm 3.26$
СМб	10.8248	0.3074	30.6	20.5	Plate	267.10 ± 35.10 (D) 72.46 ± 22.34 (T)
CM8	10.8105	0.2941	27.5	30.5	Plate	391.77 ± 65.34 (D) 111.38 ± 13.12 (T)
CM10	10.8213	0.2721	29.7	28.8	Plate & round	
CM12	10.8223	0.2847	31.4	26.0	Irregular bulky round	366.52 ± 24.82

^aDetermined from XRD patterns using the Scherrer equation. ^bBET surface area. ^cObserved by SEM analysis. ^dMeasured by TEM technique. ^eUnreacted CaO. D: diameter and T: thickness.

Fatty acid composition of N. oculata

Subtituent	Name of the fatty acid	Structure (xx:y)	*Lit	Composition %			
				Hexane	CHC _I 3	CHCl ₃ : MeOH (1:2 v/v)	MeOH
Saturated lipid	Lauric acid	12:0		-	-	0.21	0.34
	Myristic acid	14:0	4.9	0.42	3.08	3.90	6.73
	Pentadecanoic acid	15:0		-	-	0.26	0.57
	Palmitic acid	16:0	25.2	3.65	15.4 9	27.45	24.67
	Margaric acid	17:0		-	-	0.25	0.67
	Stearic acid	18:0	1.1	-	-	0.68	0.69
	Arachidic acid	20:0		-	-	-	0.13
Monosaturated lipid	Palmitoleic acid	16:1	29.3	1.96	9.16	20.10	22.43
	Oleic acid	18:1	13.6	0.73	2.60	5.20	7.68
Polysaturated lipid	Hexadecadienoic acid	16:2		-	-	-	0.42
	Hexadecatrienoic acid	16:3		-	-	-	0.16
	Linoleic acid	18:2	1.1	0.32	2.33	4.60	5.53
	Linolenic acid	18:3		-	-	-	0.60
	Eicosadienoic acid	20:2		-	-	-	0.24
	Eicosatrienoic acid	20:3		0.36	-	-	0.12
	Arachidocic acid (AA)	20:4		-	1.77	2.52	3.18
	3,7,11,15 methylhexadecanoic acid	20:4		-	-	0.50	-
	Timnodonic acid	20:5	22.6	0.97	12.6 6	16.98	14.63
Others			1.2	91.59	52.9 1	17.35	11.13
^a Unsaturated/ saturated ratio				1.07	1.54	1.52	1.63

^aPercentages may not add to 100 % due to other constuitents not included. * Lit. Li. Y. S. et al., 2011

Methanolysis reaction on crude *Jatropha curcas* oil: correlation between biodiesel yield and synthesis time, surface area and morphology of catalyst

Influence of **different synthesis times** on transesterification of crude *Jatropha curcas* oil: catalyst dosage 2 %, reaction time 2 h, reaction temperature 65 °C.

It is noteworthy that the catalytic activity of synthesized $Ca(OCH_3)_2$ catalysts showed high transesterification activity in the range of 74–87%.

The FAME yield was increased from CM2 to CM8, while the further increment of synthesis time from CM10 to CM12 resulted in small decreases in catalytic performance.

Catalytic activity

Influence of **methanol ratio** on transesterification of extracted *N. oculata* lipid from dried microalgae powder: catalyst dosage 3 %, reaction time 3 h, reaction temperature 60 °C.

The figure show the transesterification of lipid with various amount of MeOH ratio (10 - 60 %) catalyzed by Ca(OMe)₂ catalyst.

The yield of methyl ester increased with increasing molar ratio MeOH to lipid and reached maximum of 85 % at the MeOH ratio of 60 : 1.

The increasing the amount of MeOH was required to accelerate the formation of the product due to this reaction was reversible.

Catalytic activity

Influence of **catalyst dosage** on transesterification of extracted *N. oculata* lipid from dried microalgae powder : (n(methanol):n(oil) = 30:1 reaction time3 h, reaction temperature 60 °C.

The effect of catalyst concentration on the MDO was tested from range of 3 to 15 wt.%.

The yield of methyl ester increased with increasing amount of catalyst and reached a higher value of 92 % (10 wt.% catalyst). The yield of FAME decreased when the catalyst amount increased to 15 wt.%.

Reason:

(i) The high concentration of **RO**⁻ **species** formed from the dissociation of methanol on the basic site and the catalyst as well.

(ii) Too high amount of catalyst in the system cause **a multiphase mash formed** will increase the resistance to stirring and decrease the dispersion of catalyst, led to the low yield of methyl ester.

Catalytic activity

Influence of **reaction time** on transesterification of extracted *N. oculata* lipid by $Ca(OCH_3)_2$ (a), CaO (b) and (c) NaOH catalyst : catalyst dosage = 12 wt. % (a & b) and 1 mol (c), *n*(methanol):*n*(oil) = 30:1, reaction temperature = 60 °C

 $Ca(OCH_3)_2$ (CM8)

The comparison of FAME yield using two solid catalysts ($Ca(OCH_3)_2$ and CaO) and one homogeneous catalyst (NaOH).

The NaOH catalyst reacts significantly faster compared to the heterogeneous catalysts (completely converted to FAME within 20-30 min).

For the heterogeneous catalyst system, the results revealed that the reaction rate is very slow and maximum FAME yield of 80 % is achieved after 3 h which is due to the heterogeneous mass transfer systems between the solid catalyst and the liquid reactant.

The catalyst showed higher conversion rate and achieved 92 % FAME yield compared to 80 % of CaO over the same duration.

Drawback of NaOH:

(i) Residual catalyst was found in the FAME. An extra procedure was conducted, *i.e.* water washing.

(ii) When water droplets were added to the FAME layer, the unreacted TG and other intermediates were hydrolyzed and saponified.

The results showed that the catalyst can be **reused up to five times**.

The deactivation of the catalyst is due to the impurities that come from microalgae lipid, *i.e.* phospholipids and moisture, which changed the active phase and morphology of catalyst as shown.

Fresh

Used

XRD patterns and SEM micrographs of fresh and deactivated Ca(OCH₃)₂ catalyst

GC chromatogram

Methyl laurateC 12:0Methyl myristateC 14:1Methyl palmitateC 16:0Methyl palmitoleateC 16:1Methyl stearateC 18:0Methyl oleateC 18:1Methyl lipoleateC 18:2	
Methyl myristateC 14:1Methyl palmitateC 16:0Methyl palmitoleateC 16:1Methyl stearateC 18:0Methyl oleateC 18:1Methyl lipoleateC 18:2	
Methyl palmitateC 16:0Methyl palmitoleateC 16:1Methyl stearateC 18:0Methyl oleateC 18:1Methyl lipoleateC 18:2	
Methyl palmitoleateC 16:1Methyl stearateC 18:0Methyl oleateC 18:1Methyl lipoleateC 18:2	
Methyl stearateC 18:0Methyl oleateC 18:1Methyl lipoleateC 18:2	
Methyl oleate C 18:1	
Methyl linoleate C 18:2	
Methyl arachidate C 20:0	
Methyl docosanoate C 22:0	-1
All cis 5,8,11,14,17- C 20:5(n3)	
methyl eicosapentenoate	
40 35.43 % GC Chromatogran	n
35 - 30 - 27.54 %	
5 25 - Unsaturated FAME > 5	5 0 %
ter 20 -	
3 15 - 4 1 1 1 1 1 1 1 1 1 1	
5 -	
0	
C14:0 C16:0 C18:0 C16:1 C18:1 C18:2 C:20:4 C20:5 (Fatty acid methyl ester profile	C22:6

Summary

- Solid base calcium methoxide catalyst **successfully** synthesized for methanolysis of crude *Jatropha curcas* and crude microalgae oils to produce biodiesel.
- The bulk calcium methoxide (CM8) showed **superior effect** & **fast conversion** in catalytic activity due to the **high surface area tend to promote highly basic property**.
- At optimization condition, CM8 show high methyl ester production (92%) from microalgae derived oil at the condition of (*n*(methanol):*n*(lipid) =30:1, 12 % of catalyst, reaction time of 3 h at 60 °C.

Postdoctoral

- Dr. Aminul Islam
- Dr. Teo Siow Hwa
- Dr. Sivasangar Seenivasagam

Postgraduate Students

• PhD

Faris Jasim Mohd. Lokman Ibrahim Mohd Sufri Matuli Mahashanon Syazwani Othman Nurul Suziana Nawi

• MSc

Surahim Ivan Tan Rachel Tang Duo Yao Davin Yap Ahmad Farabi Abdul Kareem Ezzah Arfaezah Salam

Graduated Students

- 1. Dr. Tan Kian Peng (*Metalysis Ltd.*, UK)
- 2. Dr. Looi Ming Hoong (UM)
- 3. Dr. Leong Loong Kong (UTAR)
- 4. Dr. Goh Chee Keong (*Republic Polytech, Singapore*)
- 5. Dr. Ali Asghar Rownaghi (Georgia, USA)
- 6. Dr. Tang Wen Jiunn *(KDU)*
- 7. Dr. Wong Yee Ching (UM Kelantan)
- 8. Dr. Lee Hwei Voon *(UM)*
- 9. Dr. Fath Elrahman Hamid *(UTP)*
- 10. Dr. Sivasangar Seenivasagam
- 11. Dr. Teo Siow Hwa
- 12. Dr. Theam Kok Leong
- 13. Dr. Mohd. Hasbi Abdul Rahim (UM Pahang)
- 14. Mr. Saw Chaing Sen (INTEL Malaysia)
- 15. Mr. Ahmad Raslan Mat Hussin (Bernas)
- 16. Ms. Ita Jong (*Canada*)
- 17. Mr. Peh Tian Hai (ICI)
- 18. Dr. Lim Gin Keat (USM)
- 19. Dr. Nor Asrina Sairi (UM)
- 20. Mr. Theam Kok Leong (UTAR)
- 21. Ms. Nurul Fitriyah Abdullah
- 22. Mr. Tang Lok Hing (*Republic Polytech, Singapore*)
- 23. Sudarno (Indonesia)
- 24. Asiah Abdullah (*UiTM*)
- 25. Suhaizam Suhaimi (UIA)
- 26. Mohd Faizal
- 27. Shajaratunnur
- 28. Rabiah Nizah
- 29. Lai Fook How

THANK YOU TERIMA KASIH ありがとうございました 감사 شکر الکم

謝謝/谢谢

