

Environmental Performance Test of Hazardous Waste Incinerator in Indonesia

BPP

Prof . Kardono, Ph.D. Environmental Technology Center Agency for the Assessment and Application of Technology (BPPT) Jakarta, INDONESIA

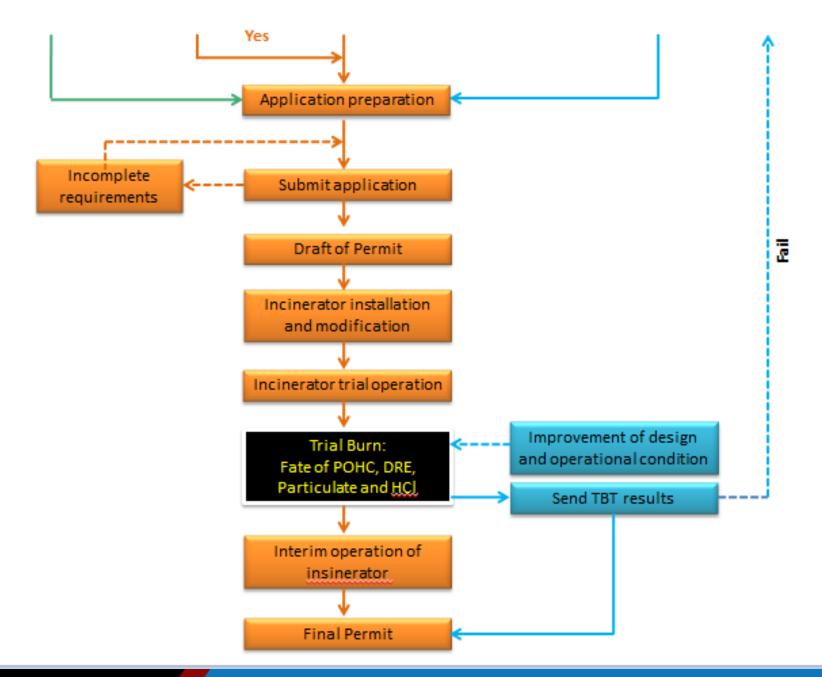
INTERNATIONAL SYMPOSIUM ON SUSTAINABLE GREEN SCIENCE AND TECHNOLOGY King Mongkut's University of Technology North Bangkok 8 October 2015

CONTENT

- 1. INTRODUCTION
- 2. HW INCINERATOR PERMIT
- 3. INCINERATOR FACILITIES
- 4. HW BURNED
- 5. INCINERATOR PERFORMANCE TEST PARAMETERS
- 6. SAMPLING AND ANALYSIS
- 7. RESULTS
- 8. CONCLUSION

1. INTRODUCTION

- Hazardous wastes (HW) in Indonesia has increased due to industrial development.
- If not properly managed, HW will degrade the environment and then affect other sectors: economy, social and health.
- Landfill as primary HW disposal cannot be continuously employed due to land scarcity.
- Incineration is now becoming more attractive method to landfill disposal for HW treatment.
- Thus, incinerators attract many HW related business people in Indonesia to use them.
- They are starting to submit to the Government for having permit.



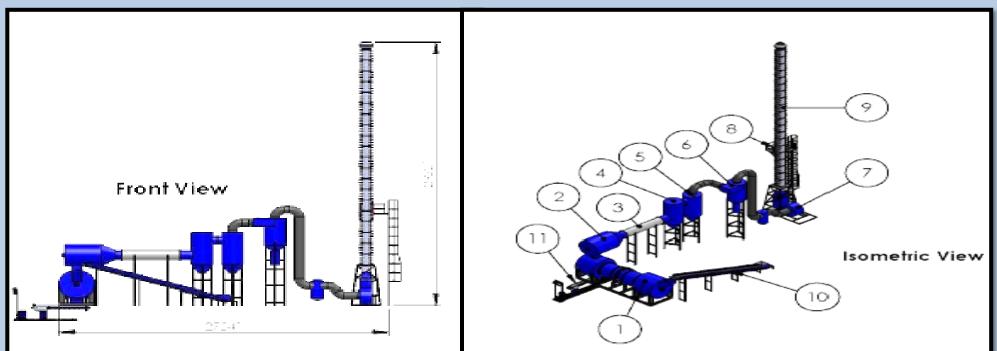
1. INTRODUCTION

- Incinerator destroys toxic organic compounds and reduces the volume of hazardous waste by converting solids and liquids to ash.
- It needs proper mixing of air, waste and fuel; produces high temperature, and requires adequate time to allow destruction of organic constituents.
- Performance test is required to meet the regulated standard values of the parameters tested.
- Demonstration to show the environmental performance of the incinerator is known as trial burn test (TBT).
- This presentation will show you how a such business occurs in Indonesia.

2. HW INCINERATOR PERMIT PROCESSES BPPT Capacity & General Waste Location Information Layout Processes Inventory Waste Characterization Public facilities Plan (draft) Design criteria of incineratorfacilities Facility description Emergency plan Waste analysis plan Traffic plan Security plan Facilitylocation Conceptual design of * Inspection schedule Training plan Incinerator design Emergency response • Financial/liability incineratorfacilities & performance & Prevention Topography map evaluation Design, operation, maintenance, technical reporting, Refer to Literatures: same NO closure plan incinerator and wastes Public facilities plan (Final) E. Trial-Burn Plan: Waste analysis Incinerator engineering description YES Sampling and monitoring procedures Sampling test schedule Control information

BADAN PENGKAJIAN DAN PENERAPAN TEKNOLOGI

BADAN PENGKAJIAN DAN PENERAPAN TEKNOLOGI


3. FACILITIES OF INCINERATOR

- There are several types incinerators used for HW destruction in Indonesia, for example: liquid spray; pressure jet and rotary kiln type incinerators.
- Two chambers are commonly constructed: 1st and 2nd chamber.
- APC devices used are mostly cyclone and scrubber to collect particulate as well as acid gases.
- They are installed with a stack at certain height to vent the gaseous emissions resulted from the incineration of HW.
 - Sampling facilities such as platform, safety stair and isokinetic sampling holes are provided.

3. FACILITIES OF INCINERATOR

ITEM	DESCRIPTION
1	Chamber-1 (Rotary kiln)
2	Chamber-2
3	Heat exchanger
4	Water scrubber-1

ITEM	DESCRIPTION
5	Water scrubber-2
6	Cyclone
7	IDF
8	Platform & sampling holes

ITEM	DESCRIPTION
9	Exhaust stack
10	Waste feeding conveyor
11	Ash screw conveyor

3. FACILITIES OF INCINERATOR

A rotary kiln type incinerator, 600 kg of hazardous waste sludge per hour was studies as a case study.

4. HAZARDOUS WASTES BURNED

Parameter of Waste Burned	Limit	Unit
Sulfate (SO ₃ -)	≤ 800	ppm
Nitrite (NO ₂ -)	≤ 1000	ppm
Hydrogen Fluoride (HF)	≤ 10	ppm
Hydrogen Chloride (HCl)	≤ 70	ppm
Arsenic (As)	≤ 30	ppm
Cadmium (Cd)	≤ 20	ppm
Chromium (Cr)	≤ 2500	ppm
Lead (Pb)	≤ 7500	ppm
Mercury (Hg)	≤ 5	ppm
PCBs	≤ 5	ppm
Heating Value	>1650	kkal/kg
рН	4 – 11	-
Ash content	≤ 2	%
Sediment	≤ 10	%
Density	0.6 – 1.3	g/cm ³
Boiling point	20 - 250	°C

5. PERFORMANCE TEST PARAMETERS OF HW INCINERATOR

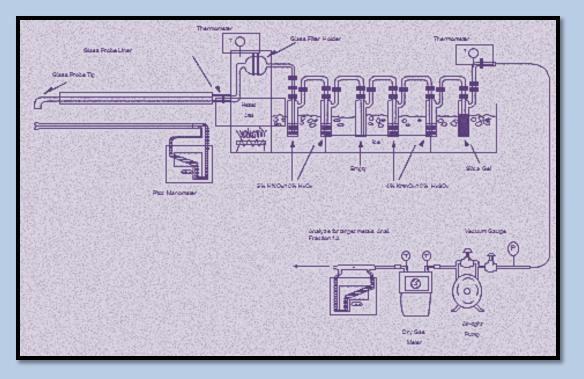
Emission Parameter	Standard Emissions for Incinerator	Unit	 Combustion Efficiency : 99.99% Gas residence time : ≥ 2 seconds DRE-POHC: 99.99%
Particulate	50	mg/m ³	4. DRE-PCDDs/PCDFs : 99.9999%
Sulfur dioxide (SO ₂)	250	mg/m ³	5. DRE-PCBs : 99.9999%
Nitrogen dioxide (NO ₂)	300	mg/m³	
Carbon monoxide (CO)	100	mg/m³	
Hydrogen chloride (HCl)	70	mg/m³	
Hydrogen Flouride (HF)	10	mg/m ³	This TDT did not do compling of
THC – as CH ₄	35	mg/m³	This TBT did not do sampling of:
Arsenic (As)	1	mg/m³	1. DRE-PCDDs/PCDFs : 99.9999%
Cadmium (Cd)	0,2	mg/m³	2. DRE-PCBs : 99.9999%
Chromium (Cr)	1	mg/m³	3. HF
Lead (Pb)	5	mg/m ³	5. 11
Merkury (Hg)	0,2	mg/m ³	
Thallium (Ti)	0,2	mg/m ³	
Opacity	10	%	

6. SAMPLING AND ANALYSIS: Stack Sampling Plan

Sampled parameters		May	2015	
	9	10	11	12
A. DRE POHC:				
 80%- Run1 				
 80%- Run2 				
 80%- Run3 				
 100%- Run1 				
 100%- Run2 				
 100%- Run3 				
B. Other pollutants				
 80%-Run 1 				
 80%-Run 2 				
 80%-Run 3 				
 100%-Run 1 				
 100%-Run 2 				
 100%-Run 3 				

- Date of stack sampling: May 9-12, 2015.
- Load: 80% and 100% of waste capacity, 3 runs per load.
- Other pollutants:
 - Particulates and metals (As, Cd, Cr, Pb, Hg, Tl);
 - 2. HCl;
 - Total hydrocarbon as CH₄, CO₂, CO, SO₂, NO₂;
 - 4. Opacity

6. SAMPLING AND ANALYSIS: Stack Initial Data


Stack specification	Size
Stack height from the ground, h	17.0 m
Stack diameter, D	0.75 m
Sampling hole position from the ground	12.2 m
Disturbance free stack height, H	13,0 m
Stack height of equivalent diameter	17.3 D
Sampling hole distance from upper disturbance, H _A	4.8m (6.4 D)
Sampling hole distance from lower disturbance, H _B	8.2m (10.9 D)

	Distance from the wall	cm
	1	3.30
3:(:(: :):):	2	10.95
· · ·	3	22.20
	4	52.80
D Report	5	64.05
	6	71.70

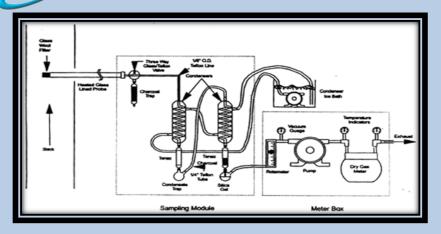
- Linier stack gas velocity: Stype pitot tube
- Dry gas molecular weight: Portable gas analyzer
- Gas moisture content: absorbent bottles

6. STACK SAMPLING: Particulates and heavy metals

- Isokinetic sampling withdraw the flue gas via nozzle so that the linear velocity of the gas entering the nozzle is as close as the velocity of gas flowing in the stack.
- Particulate emission is collected on a heated filter and a probe line in front of the filter for gravimetric determination followed by digestion process for heavy metals detection.
- The gas is collected in 5% HNO₃/10% H₂O₂ acid solution contained in the impinger # 1 & 2 (for all heavy metals analysis but Hg), and in 4% KMnO₄/10% H₂SO₄ acid solution contained in the impinger # 4 & 5 (for Hg analysis).
- All recovered sample is digested and then analyzed for Hg by CVAAS and for other heavy metals by GFAAS.

6. STACK SAMPLING: Sampling for Particulate and Metals; US-EPA Method 29

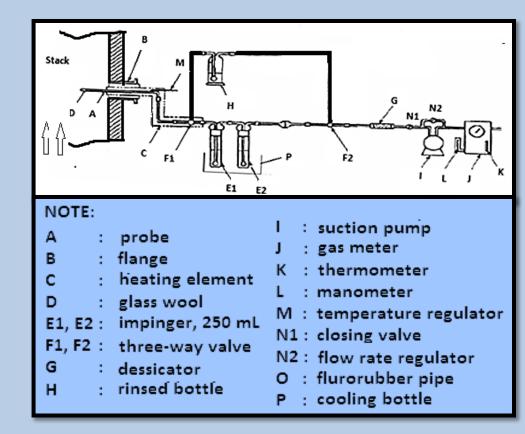
BADAN PENGKAJIAN DAN PENERAPAN TEKNOLOGI


6. STACK SAMPLING: Particulate and Metals Sample Recovery

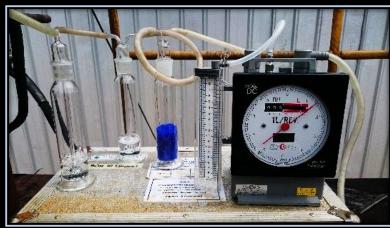
6. STACK SAMPLING: VOST, US-EPA Method 30 – POHC (TCE)

Sampling train for POHC (DRE)

Sampling into stack


Meter Box

BADAN PENGKAJIAN DAN PENERAPAN TEKNOLOGI


BPD

6. STACK SAMPLING: Sampling train for HCl gas

6. STACK SAMPLING: Flue gas sampling using Portable Flue Gas Analyzer

Gas analyzer used to measure emitted gases from the stack

6. STACK SAMPLING: Opacity Detection

10 sacles

Smoke opacity measurement equipment based on ASTM D 2156-2003

Opacity measurement using telescope completed with a 5-scale Ringelmann

Parameter	80% Waste feed		100% Waste feed			
	Run-1	Run-2	Run-3	Run-1	Run-2	Run-3
Total sampling time, min.	60	60	60	60	60	60
Vol. of sampled gas, V _{m(STD)} , m ³	1,466	1,522	1,512	1,419	1,532	1,281
Stack temperature, °C	231	236	217	228	217	213
Gas linear velocity, m/s	11,12	11,07	10,77	10,10	9.67	9,81
Gas flow rate, ACT. m ³ /h, db.	17676	17589	17128	16052	15371	15593
Gas flow rate, STD. m ³ /h, db.	9637	9481	9625	8770	8781	8422
O ₂ content, %	11,2	11,6	12,3	11,4	11,4	11,4
Isokinetic value, %	102,5	106,9	104,3	109,7	107,2	102,4
Fuel consumption, CFM	85	85	85	85	85	85
Waste feeding rate, kg/h	480	480	480	600	600	600
Gas retention time, second	2,38	2,35	2,25	2,43	2,42	2,75
Temperature of 1st chamber, °C	1256	1332	1315	1377	1322	1226
Temperature of 2nd chamber, °C	1109	1139	1129	1177	1198	1134

Incinerator operational conditions

Parameter	80% Waste feed		100% Waste feed			Standard	
	Run-1	Run-2	Run-3	Run-1	Run-2	Run-3	Value
Sampling time, min.	60	60	60	60	60	60	
Particulate, mg/Nm ³	36,16	37,82	35,62	44,73	49,00	48,89	50
As, mg/Nm ³	<0,0191	<0,0191	<0,0191	<0,0191	<0,0191	<0,0191	1
Cr, mg/Nm ³	0,2562	0,6905	<0,0025	0,1277	0,2840	0,2552	1
Pb, mg/Nm ³	0,2136	0,6077	0,1266	0,2461	0,1801	0,1478	5
Cd, mg/Nm ³	0,0204	0,0198	0,0231	0,0211	0,0228	0,0239	0.2
Tl, mg/Nm ³	<0,0144	<0,0144	<0,0144	<0,0144	<0,0144	<0,0144	0.2
Hg, mg/Nm ³	<0,00056	<0,00056	<0,00056	<0,00056	<0,00056	<0,00056	0.2

Particulate and metals emission

$$DRE = \frac{W_{in} - W_{out}}{W_{in}} \ge 100\%$$

Capacity	Run 1	Run 2	Run3				
80% (4	80% (480 kg waste/h & 85 CFM fuel)						
Win (ng)	3.25x10 ⁷	3.25x10 ⁷	3.25x10 ⁷				
Wout (ng)	1503.5	1403.63	1299.71				
DRE (%)	99.995	99.996	99.996				
100% (0	100% (600 kg waste /h & 85 CFM fuel)						
Win (ng)	3.25x10 ⁷	3.25x10 ⁷	3.25x10 ⁷				
Wout (ng)	989.78	942.48	894.92				
DRE (%)	99.997	99.997	99.997				

Run No.	80% Load, mg/Nm ³	100% Load, mg/Nm ³
1	19	23
2	22	24
3	21	24
Standard	70	70

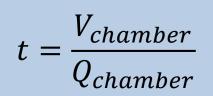
Emitted HCI concentration

DRE-POHC (TCE)

$$CE = \frac{[CO_2]}{[CO_2] + [CO]} x \ 100\%$$

Devenuetor	STD	Unit	80% Load Capacity			100% Load Capacity				
Parameter	Value		Run 1	Run 2	Run 3	Average	Run 1	Run 2	Run 3	Average
NO ₂	300	mg/Nm ³	45	50	48	48	57	63	60	60
SO ₂	250	mg/Nm ³	12	13	19	14	19	3	3	8
THC (CH ₄)	35	mg/Nm ³	10	<0,6	3	5	26	7	<0,6	11
CO	100	mg/Nm ³	9.1	<1	<1	3.0	10.3	<1	6.2	5.5
CO ₂		%	6.8	6.7	6.9	6.8	6.8	7.0	6.5	6.8
O ₂		%	12.2	12.9	12.5	12.5	12.4	12.5	12.7	12.6
CE	99.99	%	99.993	100	100	99.998	99.992	100	99.995	99.996
Note: Limit of detection of THC (Total Hydrocarbons) as $CH_4 = 0.6 \text{ mg/Nm}^3$ and $CO = 1 \text{ mg/Nm}^3$										

Gas emissions and combustion efficiency of operated rotary kiln incinerator, corrected at 10% O₂.



Incinerator flue gas opacity

Opacity at 80% Load Capacity						
Run 1	Run 2	Run 3	Average			
< 10%	<10%	<10%	<10%			
Opacity at 100% Load Capacity						
Run 1	Run 1	Run 1	Run 1			
<10%	<10%	<10%	<10%			

Gas residence time

			Beban 80%		Beban 100%		
Parameter	Unit	Run	Run	Run	Run	Run	Run
		1	2	3	1	2	3
The average of	The average of gas residence time for rotary kiln incinerator = 2,61 seconds						
First Measureme	nt						
Chamber 1	second	1,57	1,54	1,48	1,59	1,61	1,84
Chamber 2	second	0,81	0,81	0,77	0,84	0,81	0,91
Total	second	2,38	2,35	2,25	2,43	2,42	2,75
Second measurement							
Chamber 1	second	1,89	1,76	2,30	1,76	1,87	1,99
Chamber 2	second	1,00	0,91	1,20	0,90	0,96	1,11
Total	second	2,89	2,67	3,50	2,66	2,83	3,10

8. CONCLUSIONS AND RECOMMENDATIONS

	0			
Parameter	Sampling Data Value	STD Value		
Isokinetic, %	101.6 - 109.7	90 - 110		
Particulate,	9.16 - 49.00	50		
mg/Nm ³				
SO ₂ , mg/Nm ³	3 – 19	250		
NO ₂ , mg/Nm ³	34 - 63	300		
CO, mg/Nm ³	<1-10.3	100		
HCl, mg/Nm ³	< 4 - 24	70		
HF, mg/Nm ³	< 0.8 - 2.7	10		
THC as CH ₄	< 0.6 - 26	35		
,mg/Nm³				
As, mg/Nm ³	< 0.0191	1		
Cd, mg/Nm ³	0.0192-0.0239	0.2		
Cr, mg/Nm ³	<0.0025 - 0.284	1		
Pb, mg/Nm ³	0.1266 - 0.607	5		
Hg, mg/Nm ³	< 0.00056	0.2		
Tl, mg/Nm ³	<0.0144	0.2		
Opacity, %	< 10	10		
CO ₂ , %	6.5 – 6.9	-		
O ₂ , %	12.2 - 12.9	-		
CE, %	99.992-100.00	99.99		
DRE, %	99.994 - 99.996	99.99		
t _R of gas, s	10.08	≥2		

۲

- Stack specification of the rotary kiln incinerator : 17 m height from ground; 13 m height from disturbance free, 0.75 m diameter, sampling holes at 8.2 m from downstream disturbance and at 4.8 m from the upstream disturbance, that resulting 12 traverse points.
- TBT under 80% and 100 % HW capacity of 600 kg/h is working properly.
- HW burned consisting of WWT sludge (20%), oil sludge (40%), and paint sludge (40%) was actually difficult to maintain.
- All TBT results comply the standard values regulated but some of the results barely close to their standard requirement .
 - Particulate emissions at the 80% capacity is 35.62 37.82 mg/Nm³ with an average of 36.53 mg/Nm³, and at 100% capacity, it is 44.73 49 mg/Nm³ with an average of 47.54 mg/Nm³.
- To avoid particulate levels exceed the standard concentration, it needs to improve the work of scrubber by redesigning type of scrubber used and its spray nozzles' position .
- Needs redesign on chamber-2 volume to have ≥ 2 s of its gas residence time.

